Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36772020

RESUMO

Polyisocyanate and caprolactone were used to chemically functionalize nanocellulose (CNF). Composites of CNF, caprolactone-modified nanocellulose (CNF-CL) and polyisocyanate-modified nanocellulose (CNF-JQ)/MC nylon were fabricated by anionic ring-opening polymerization. The effects of the crystal structure, crystal morphology and crystallization process of MC nylon composites have been characterized by wide-angle X-ray diffraction (WAXD), polarized optical microscopy(POM) and differential scanning calorimetry (DSC). Isothermal crystallization kinetics were analyzed using the Avrami equation, and the crystallization rate, half-time, and Avrami exponent were calculated. The results show that the nucleation effects of CNF-JQ/MC nylon composites is increased with the CNF-JQ increase, and it is best compared with MC nylon, CNF/MC nylon and CNF-CL/MC nylon composites, so CNF-JQ can play the role of effective nucleating agent in MC nylon. We also discussed the non-isothermal crystallization of the composites. Analysis of the Jeziorny and Mo model demonstrates that the Zc values of CNF, CNF-CL, CNF-JQ/MC nylon composites increase, and the F(T) values decrease in order. This indicates that CNF-JQ can better promote the crystallization rate of non-isothermal crystallization of MC nylon. The results of this work demonstrate that CNF-JQ can be an effective nucleation agent and increase the crystallization rate of MC nylon compared with CNF-CL. The activation energy of the composites was studied using the kissing method, and the results showed that CNF-CL decreased the activation energy of MC nylon, and CNF and CNF-JQ increased the activation energy of MC nylon.

2.
Polymers (Basel) ; 14(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458341

RESUMO

Ceramifiable phenolic foam (GC-PF) with a low ceramization temperature has been prepared by incorporation of low melting point glass frits (LMG) containing B2O3 and Na2O as main components into a phenolic resin matrix. Fourier transform infrared spectrometry, X-ray diffractometry, and scanning electron microscopy were used for assessment of the structure, phase composition, and morphology of GC-PF before and after combustion analysis, respectively. A glassy ceramic protective layer is formed when GC-PF is exposed to flame or a high temperature environment. The presence of LMG not only reduces the level of defects in the phenolic foam cell wall (gas escape pore), but also promotes the generation of a glassy ceramic protective layer that could inhibit heat feedback from the combustion zone and reduce the rate of formation of volatile fuel fragments. Thermogravimetric analysis and differential scanning calorimetry were used to establish that GC-PF exhibits excellent thermal stability. Limiting oxygen index (LOI) determination suggests that GC-PF displays good flame retardancy. The LOI of GC-PF was as high as 45.6%, and the char residue at 900 °C was six times greater than that for ordinary phenolic foam (O-PF). The area of the raw material matrix of GC-PF after combustion for 60 s was about 1.7 times larger than that for O-PF. A possible mode of formation of glassy ceramics has been proposed.

3.
Polymers (Basel) ; 11(8)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370185

RESUMO

In this experiment, terephthalyl alcohol was used as a modifier to modify phenol under both acidic and alkaline conditions to obtain modified phenols with different molecular structures. Subsequently, the modified phenols reacted with paraformaldehyde in an alkaline environment. After foaming and curing, a modified phenolic foam with high heat aging resistance was obtained. The molecular structure was characterized via Fourier transform infrared spectrometry (FT-IR) and nuclear magnetic resonance spectroscopy (13C NMR). The results showed that two different structures of phenolic resin can be successfully prepared under different conditions of acid and alkali. The modified phenolic foam was tested by thermogravimetric analysis. In addition, the modified phenolic foam was tested for mass change rate, dimensional change rate, powdering rate, water absorption rate, and compressive strength before and after aging. The results show that the modified phenolic foam has excellent performance. After heat aging for 24 h, the mass loss rate of the modified phenolic foam obtained by acid catalysis was as low as 4.5%, the pulverization rate was only increased by 3.2%, and the water absorption of the modified phenolic foam increased by 0.77%, which is one-third that of the phenolic foam. Compared with the phenolic foam, the modified phenolic foam shows good heat aging resistance.

4.
Materials (Basel) ; 12(3)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678150

RESUMO

In the present study, acetoacetic ester-terminated polyether was selected as a modifier to prepare a new type of polyether phenolic resin, which was successfully prepared by pre-synthesis modification. It is used to prepare interpenetrating cross-linked network structure modified phenolic foam with excellent mechanical properties. Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (¹H NMR, 13C NMR) were used to characterize the molecular structure of the polyether phenolic resin. The results showed that the acetoacetic ester-terminated polyether successfully modified the phenolic resin and introduced a polyether skeleton into the resin structure. The effect of changing the added amount of acetoacetic ester-terminated polyether from 10% to 20% of the phenol content on the mechanical properties and microstructure of the modified phenolic foam was investigated. The results showed that when the amount of acetoacetic ester-terminated polyether was 16% the amount of phenol, this resulted in the best toughness of the modified foam, which had a bending deflection that could be increased to more than three times that of the base phenolic foam. The modified phenolic foam cell diameter was reduced by 36.3%, and the distribution was more uniform, which formed a denser network structure than that of the base phenolic foam. The bending strength was increased by 0.85 MPa, and the pulverization rate was as low as 1.3%.

5.
Polymers (Basel) ; 10(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30961049

RESUMO

In this present study, 3-pentadecyl-phenol was selected as a modifier to prepare a foamable phenolic resin with excellent performance, which was successfully prepared by in situ modification. Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (¹H NMR, 13C NMR) were used to test and characterize the molecular structure of the modified resin. The results showed that 3-pentadecyl-phenol successfully modified the molecular structure of phenolic resin with a reduction in the resin gel time. The effect of changing the added amount of 3-pentadecyl-phenol on the mechanical properties, microstructure, and flame retardancy of the modified foam was investigated. The results showed that when the amount of added 3-pentadecyl-phenol was 15% of the total amount of phenol, this resulted in the best toughness of the modified foam, which could be increased to 300% compared to the bending deflection of the unmodified phenolic foam. The cell structure showed that the modified phenolic foam formed a more regular and dense network structure and the closed cell ratio was high. Furthermore, the compressive strength, bending strength, and limited oxygen index were improved, while the water absorption rate was lowered. However, the foam density could be kept below 40 mg/cm³, which does not affect the load.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...